The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates p21WAF1/CIP1/SDI1 in S phase.

نویسندگان

  • O Coqueret
  • G Bérubé
  • A Nepveu
چکیده

Cut is a homeodomain transcription factor which has the unusual property of containing several DNA-binding domains: three regions called Cut repeats and the Cut homeodomain. Genetic studies in Drosophila melanogaster indicate that cut plays important roles in the determination and maintenance of cell-type specificity. In the present study, we show that mammalian Cut proteins may yet play another biological role, specifically in proliferating cells. We found that the binding of Cut to a consensus binding site varies during the cell cycle. Binding was virtually undetectable in G0 and early G1, but became very strong as cells reached S phase. This was shown to result both from an increase in Cut expression and dephosphorylation of the Cut homeodomain by the Cdc25A phosphatase. We also show that the increase in Cut activity coincides with a decrease in p21WAF1/CIP1/SDI1 mRNAs. In co-transfection experiments, Cut proteins repressed p21WAF1/CIP1/SDI1 gene expression through binding to a sequence that overlaps the TATA box. Moreover, p21WAF1/CIP1/SDI1 expression was repressed equally well by either Cdc25A or Cut. Altogether, these results suggest a model by which Cdc25A activates the Cut repressor which then downregulates transcription of p21WAF1/CIP1/SDI1 in S phase. Thus, in addition to their role during cellular differentiation, Cut proteins also serve as cell-cycle-dependent transcriptional factors in proliferating cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element

The mammalian polycomb group proteins play an important role in cell cycle control and tumorigenesis. Nervous system polycomb 1 (NSPc1) is a newly identified transcription repressor, highly homologous with PcG protein Bmi-1. In this article, we showed that NSPc1 could promote tumor cell cycle progression and cell proliferation. Semi-quantitative RT-PCR showed that NSPc1 did not affect the expre...

متن کامل

Posttranscriptional stabilization underlies p53-independent induction of p21WAF1/CIP1/SDI1 in differentiating human leukemic cells.

p21WAF/CIP1/SDI1 is a recently identified gene expressed in cells harboring wild-type but not mutant p53 gene. It encodes a nuclear protein of 21 kD which inhibits cyclin-dependent kinase activity. Constitutive p21WAF1/CIP1/SDI1 mRNA expression was detected in neoplastic cells from patients with various hematological malignancies as well as in normal bone marrow mononuclear cells and in myeloid...

متن کامل

Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway.

p21WAF1/CIP1 is a cyclin-dependent kinase inhibitor whose expression in mammalian tissues is highly induced in response to stress as well as during normal development and differentiation. Induction of p21WAF1/CIP1 in response to DNA damage occurs through a transcriptional mechanism that is dependent on the activation of the tumor suppressor protein p53. Recent evidence indicates that p21WAF1/CI...

متن کامل

Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1)

Alterations in the functions of vascular endothelial cells (ECs) induced by fluid shear stress may play a pivotal role in both the development and prevention of vascular diseases. We found that DNA synthesis of bovine aortic and human umbilical vein ECs, determined by [(3)H]thymidine incorporation, was inhibited by steady laminar shear stress (5 and 30 dyne/cm(2)). This growth inhibition due to...

متن کامل

Homeodomain Interacting Protein Kinase 2 Activation Compromises Endothelial Cell Response to Laminar Flow: Protective Role of p21waf1,cip1,sdi1

BACKGROUND In the cardiovascular system, laminar shear stress (SS) is one of the most important source of endothelial protecting signals. Physical and chemical agents, however, including ionising radiations and anticancer drugs, may injure endothelial cells determining an increase in oxidative stress and genotoxic damage. Whether the SS protective function remains intact in the presence of stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 16  شماره 

صفحات  -

تاریخ انتشار 1998